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Chiral hedgehog textures in two-dimensionalXY-like ordered domains
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The textures associated with a point defect centered in a circular domain of a thin filr{ Wike ordering
have been analyzed. The family of equilibrium textures, both stable and metastable, can be classified by a new
radial topological number in addition to the winding number of the defect. Chiral textures are supported
in an achiral system as a result of spontaneously broken chiral symmetry. Among these chiral textures, our
theoretical analysis accurately describes two categories of recently discovered ‘“reversing spiral” textures,
ones that are energetically stable and metastable.

PACS numbd(s): 61.30~v, 68.10.Cr, 68.18:p, 68.55.Ln

Thin films of elongated molecules with tilt ordering, in- figurations can be chiral as a result of spontaneously broken
cluding smectice liquid crystals and dense fluid phases of chiral symmetry. When chirality is explicitly introduced,
amphiphiles deposited on water, very often possess fascinatiore complex equilibrium textures result. The crossed polar-
ing distributions of the tilt azimuth. The organization of the izer images generated from the theoretical textures are in
tilt azimuth is referred to as the texture and can be observeexcellent agreement with the pictures taken experimentally.
by polarized light microscopy or Brewster angle microscopy.The starting point of our investigation is the following elastic
Many classes of these textures have been found experimeanergy of a chiral polar film with tilt ordering:
tally, like stripes[1], stars[2], boojums[3], and hedgehogs
[4]. These examples are observed in Langmuir monolayers 1 212 - ~on
composed of molecules that are symmetric under in-plane Hlc]= 2JQd'A‘[KsW'd +Ksp(V-C)(VXcC-2)
reflection, or achiral. Recently, more attention has been paid
to the hedgghog patterns, obtamgd ina cwpular domain with +Kb|V><E~ 2|2]+ fﬁ dso(9— ). 1)

a central point defect. The reversing spiral is one of the spec- r

tacular hedgehog textures discovered in a chiral tilted

smecticC liquid-crystal film on watef5]. Let us emphasize It is computed for a circular are@ containing the ordered
that both systems described above are polar, they are ng{edium enclosed by the boundaly. The unit vectorz
symmetric under 180° rotation about an in-plane axis. Theyints normal to the film. The quantitie$, and K are,
tilt azimuth can be represented by a two-dimensional VeCtOFespectiver, the bend and splay elastic modts#:X cos®

c, the projection onto the film of the elongated molecules,ﬂAlSm@ is the order parameter of the systenis the angle

analogous to the order parameter of>avi model. Textures b 2 and th . 49 is th le b h

in two-dimensionalXY-like systems have attracted a good etweenc and thex axis, an 'S_t € angle etwe_en_t N
outward normal tol" and thex axis. The anisotropic line

deal of attention. A brief theoretical account based on a per2Yt™W
turbative approach of hedgehogs in achiral monolayers calfsion o(¢) can formally be expanded asoy
be found in Ref[6]. The stability of the hedgehog configu- .+ =n(@n COSN$+C,sinng). We will consider only the first
ration in an isotropic and achiral system has also been inved8W coefficients in the expansion. The first-order terms are
tigated[7]. Spiral textures in an achiral system have beerf fOr polar films anct, for chiral systems. When the system
studied in the small distortion reginf€]. Although a theo- IS nonpolar,a; vanishes anca, must be considered. The
retical approach to solutions for hedgehog textures is giveffP€fficientc; is relevant when the system is both polar and
in Ref. [5], to the best of our knowledge, a systematic dis-chiral, but it will be neglected becauia@ andglftre nonzero
cussion of hedgehog textures in a chiral system has not bed@r such a system. The cross terM-€)(V Xc-z) has to be
presented. included when the film is both chiral and polar. It is required
In this paper, we study a generic mo@@] for the texture  that the coefficientkK | <2 KK}, so that the elastic energy
in a circular domain of a two-dimensionlY-like system. density remains positive for arbitrary splay and bend distor-
We have found a family of equilibrium configurations that tions.
can be classified by a new topological number analogous to We will restrict ourselves to the hedgehog textures, each
the winding number that classifies a two-dimensional pointontaining a central point defect of winding numbet with
defect[10]. When a system is achiral, these metastable coneore radiusé. The defect core corresponds to the region in
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which ¢ is not defined. We assume that its presence affects
the elastic energy only through the inner boundary condition
at r=¢ and we neglect its energetic contribution when
< & [11] wherer is the radial distance. The boundary condi-
tion is taken to be®|r:§=<p+ ¢4, Where ¢ is the polar
angle in plane-polar coordinates, apglis a constant. This is
indeed justifiable for- 1 defects with the structure discussed
in Ref.[12]. We further assume that the defect is stable when
it i_s located at th_e qenter @ and that the system i_s cylin- FIG. 1. Plots ofy=g, and y=Roay(In Ry—In & singy/x Vs
drically symmetric, ';e'@:@+f(|n r), wheref(Inr) is the ¢p. The intersectionse!’, give the equilibrium configurations
radial distribution ofc. These assumptions can be shown tof{)(k). Those marked with open circles are stable. The parameters
be valid for all the textures to be discussed. We shall comused arex=1, Ry=5, £=0.1, anda;=—1.1.
pute the possible expressions fifinr) that minimize the
elastic energy and give the equilibrium textures. In terms othe inner boundary. It is typical in linear stability analysis
k=Inr, the elastic energy reduces to that there is another boundary condition ¢ that isolates a
set of eigenvalues in which the sign of the lowest one is to
11 0 12 2 _ be tested. For our particular case, there is no other restriction
HLT. ] WKJM di1+1 HI(L=T7)cos2f=254) on ¢, that can be imposed and alls are allowed. The

L deviation of energy associated with the fluctuational mode
—2f'sin(2f =25, )]} +27Ryo(—f)|jn Re (@ ¢, isnolonger\ but

In R,

where =K +K,, 2kB=Ks—K,, 2km=Kgp, u SHy =N+ ¢, By, 9)
=B%+ 7%, 2s.=tan '7/B=m, whereR, is the radius of

the boundary". The equilibrium condition forf (k) is wherey, = (1 , )| Ry, INstability is signified bysH, be-

Y Y 2 i _ coming negative. The asymptotic behavior &f, can be

— "= p[f7cog2f =25 )= (1 +1)sm(2f—2g+)]—03 shown to besH,~—|\|+R{2™) when \— —c, and

( oH,\>(1-B,,//2B,, )\ _when A—= for Ryyaj+ci>«

and the boundary condition &t&=In Ry is ando”(—fo)|k=in Rom/azﬁ clz. We see thatH, is positive

, , . in both limits and can only change sign for small
w{f'+ulf'cog2f—25, ) +sin(2f-25,)]} We have outlined the procedures to obtain the equilibrium
—Ryo'(—f)=0. (4)  textures and to examine their stability against infinitesimal
fluctuations. To understand these equilibrium textures, we
Depending on the choice of the parametdérmay possess first look at the simplest cas=7=c;=a,=¢4=0 and
more than one or, at times, numerous solutions. We use lire;<0. It corresponds to a polar film made of achiral mol-
ear stability analysis to determine if these solutions are locaécules, with isotropic elastic constants and having fixed an-
minima. The elastic energy is expanded to second order ighoring at the inner boundary such titapoints normal into
small var|at|ons(zf—f$ about an equilibrium configuration the bulk. The conditiora;<0 indicates thatt favors the
fo as oH=JdkyLx+¢ By, where outward normal direction at the outer boundary, without be-
2 ing locked. In this case, there are analytic solutions. It is
L=—mk| [1+ u cog2fy— 2g+)]d_ 9bvious thatf (k) =0 is the lowest-energy configuration: all
dk? ¢ vectors point along the radial direction. The general solu-
tion to fo(k) is
—u[fgsin(2fg—2s,)+2cog2fy—25,)]1, (5 o

foll)=15 Ro—Iné

(k=In¢§) (10
B ’ r:0, (6)
and ¢, satisfies

TK
BXX’:BX’XZT[L"M cod2fo—=25.)Jnr,  (7) :ROal(ln Ro—In¢) Si

K

®p Ney. (11

B, =m{—ku[f,sin2fy—2s.)—2 cog2f,—2s .
o= Tkl fosin(2fo=2s.) $2fo=2s.)] The quantityey, is the anchoring angle af measured with

+Roo”"(—fo) b Ro’ (8) respect top at k=InR,. It is easy to see that the system
supports humerous equilibrium solutions when the amplitude
and¢"=(x".x) | Ry The deviation of the elastic energy |Rpa1(InRy—In &)/x|>1. Figure 1 shows the plots ef, and
from its equilibrium value can be examined in terms of theRoa1(INRy—In &) sing,/x. We denote the solutions of Eq.
eigenvalue\ and associated eigenfunctios, satisfying (11) by @i’ with an indexi. Not all the solutions are stable.
Ld,=\¢, . The eigenfunctionsp, are normalized so that The stable ones are indicated bonpen circles in Fig. 1. When
Jdk¢p2=1 and ¢, | =0 for infinitely strong anchoring at o+0, we have spirals in which points in the radial di-
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24 um —
22 um
FIG. 2. lllustrations of the lowest-energy configuration for

k=1, u=0.70, s, =7/2, Ry=5, £=0.1, a,=—10, andgy=0. FIG. 3. lllustrations of a texture configuration that resembles the
(a) is a plot Offgl)(k) vs k for f(()l)'(o):]_'9788’ the dashed line reversing spiral observed experimentally in Rgb], when
indicates s, , (b) shows the corresponding density plot of f&z)'(0)= —-0.4659, k=1, B=0.90, X,=w—-3.11, Ry=5,
sir? ® co€ O, and(c) depicts the experimental image of a reversing £€=0.1, a; =10, ¢;=20, andgy=2.5. (a) The plot of f?)(k) vsk,
spiral observed in free standing film of chiral smedidiquid crys-  the dashed lines indicate, and 27+s_, (b) the corresponding
tal. The polarizer and the analyzer are vertical and horizontal. ~ density plot of co$0, and (c) the experimental image of a DRS

) ) _ observed in a chiral smectic-film on water. Polarizer and analyzer
rection at the inner boundary and rotates counterclockwisgre slightly uncrossed.

throughe{ along a radial path ending at the outer boundary. ) N o
These metastable textures do not have in-plane reflectioRorted in addition to those with higher;'s. The behavior of
symmetry although the system in question is achiral. Wehec- distribution in such cases can be understood intuitively
find, by inspecting the boundary condition E@.1), that  py noting the existence of two preferred bulk directionsdor
there is a solutio’ = — ¢{) for any solutione’ and these  when ® — ¢ <[ — 7, ), namely,®.=g¢+s. . Right at the
configurations have the same energy. Hence, chiral symmeénner boundary of), O is set top+ ¢4. Along a trajectory
try is spontaneously broken for the higher-energy metastablgaversing radially into the bulk® settles smoothly near one
configurations. The family of solutions can be classified inof @ . , depending on which of these gives the lower overall
terms of a topological inder;, which is defined to be the energy of the system@_. for our cas@ When it gets to the
nearest integer aroung\/27. This classification can also outer boundary,® gradually sets itself atp+ ¢,. The
be drawn topologically by examining the possible order-f{)(k) and texture for the lowest-energy configuration tak-
parameter distributions along a line in the radial directioning 70, are displayed in Fig. 2. The texture is depicted as
connecting the inner and the outer boundafi. All inte-  the density plot of sih® cof @, which simulates the images
gers are allowed topologically, but only some are supporte@btained by a set of crossed polarizers. Figui® ghows an
energetically in a bounded system. experimental image of a chiral smecticliquid-crystal do-
The situation is different whea; >0, i.e., when the pre-  main in a free standing film. It is very similar to the image
ferred direction ofc at the outer boundary is in the inward shown in Fig. 2b), computed using the appropriate param-
normal direction. The solutiofiy(k) =0 is now unstable and eters for a chiral free standing film.
we cannot have a pure splay texture anymore. The lowest- Apparently, these images do not resemble the remarkable
energy configuration corresponds to the first nonz@[;t)) and dramatic reversing spiral texture reported in Refand
satisfying Eq.(11). It is a spiral texture as are all the other shown in Fig. &). Nevertheless, Fig. 2 does represent a
metastable configurations allowed. Let us emphasize thageversing spiral, sincégl)(k) goes through a maximum at
they all break the chiral symmetry spontaneously. The spirahbout k=2.0. However, the initial rotation of the director
textures we have just discussed arise from spontaneoushear the core is so rapid that it is barely visible. We are able
broken chiral symmetry in an isotropic achiral system. Theto locate among the various solutions an equilibrium texture
actual system may not be isotropic and the paramgtes  that resembles the “dramatic reversing spirédt DRS tex-
not necessarily zero. Further, it is possible to explicitly breakture), illustrated in Fig. 3. The distinguishing feature of the
the chiral and polar symmetries#£ 0) by adding chiral mol- DRS texture is the extended region near the core in which
ecules to the system and by putting the film on water, respedhe director rotates slowly. This configuration is constructed
tively. When B or 7 are nonzero, analytic solutions for Eq. by choosing the values @ at the inner boundary and at the
(3) are not obvious and we resort to numerical methodsouter boundary to be aroun® _=¢+s_+27. Starting
More complex equilibrium textures witln,=0 are sup- from the inner boundary® first remains nea® _, then
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swings nearlyw to a value close t® , and finally returns  ordering. Restricting our analysis to the class of textures with
rapidly to ¢ + ¢, (which has been set to be arouBd ) near  the defect fixed at the center, we find the equilibrium con-
the outer boundary. The functidrgz)(k) and its texture are figuratio_ns_a_nd _examine the_ stability of these configurati_ons
depicted in Fig. 3. There is strong resemblance between thgainst infinitesimal fluctuations. Many metastable configu-
density plot of co%®, simulating the images obtained with rations are supported at some suitable choice of parameters.

slightly uncrossed polarizers, and the experimental picture of "€S€ can be classified by a new radial topological number
the DRS. analogous to the winding number classifying the point de-

Remarkably, the DRS is only a metastable texture! It isfect. It is also found that metastable configurations are chiral,

easy to see thdf? (k) is not the lowest-energy solution. The !PC:]Udmg the stable Iowe;t—er;ergy tefi(tur_e wiagt-0, even H
configuration, in which® sets smoothly nea® _ without ; It c systgm posseshsesl_ln—p age relz gctlon symmc(ietry.dw en
going through the rapid changes &, and then back to elastic anisotropy, chirality, and polarity are introduced ex-

. . . licitly, more equilibrium solutions exist. Among the equi-
0_, has the lowest-elastic energy. Sini@)(k) is not the preity d d d

lobal mini f the elasti N bil librium textures, we have found two kinds of reversing spi-
global minimum of the elastic _energ[Eq.( )], its stability rals, simple ones that are absolutely stable textures, and
against fluctuations is in question. We have examideg ,

e . . X . _metastable ones of a more dramatic appearance, that re-
the deviation in energy associated with the reversing spiralg ,ple closely the reversing spiral reported in R8}.
solution, in a wide range of, and conclude that the DRS is

a metastable configuration for the present choice of the pa- K.-K. L. would like to express his gratitude to Professor
rameters. In general, the DRS texture is not even metastabl®oseph Rudnick for ideas, suggestions, and support, and to
for an arbitrary set of parameters. As noted in REf, the  thank Professor Charles Knobler and Professor Robijn
DRS texture is rare, which is consistent with these findingsBruinsma for numerous stimulating discussions. This re-

In conclusion, we have analyzed a generic model for texsearch was supported in part by the NSF through Grant No.
tures associated with &1 defect in domains wittiXY-like =~ DMR-9974388 and by Brandeis University.
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